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Abstract

This paper investigates the joint identification problem of unknown system parameter and noise parameters in quantized systems
when the noises involved are Gaussian with unknown variance and mean value. Under such noises, previous investigations
show that the unknown system parameter and noise parameters are not jointly identifiable in the single-threshold quantizer
case. The joint identifiability in the multi-threshold quantizer case still remains an open problem. This paper proves that the
unknown system parameter, the noise variance and the mean value are jointly identifiable if and only if there are at least
two thresholds. Then, a decomposition-recombination identification algorithm is proposed to jointly identify the unknown
system parameter and noise parameters. Firstly, a technique is designed to convert the identification problem with unknown
noise parameters into an extended parameter identification problem with standard Gaussian noises. Secondly, the extended
parameter is identified by a stochastic approximation method for quantized systems. For the effectiveness, this paper obtains
the strong consistency and the Lp convergence for the algorithm under non-persistently exciting inputs and without any a priori
knowledge on the range of the unknown system parameter. The almost sure convergence rate is also obtained. Furthermore,
when the mean value is known, the unknown system parameter and noise variance can be jointly identified under weaker
conditions on the inputs and the quantizer. Finally, the effectiveness of the proposed algorithm is demonstrated by simulation.

Key words: Quantized systems, stochastic systems, recursive identification, stochastic approximation, non-persistent
excitations.

1 Introduction

In identification problems, quantized systems have been
extensively studied over the past two decades due to
the practical importance. Such systems widely exist in
practical fields.

i) Genome-Wide Association Studies [1]: Quantized
phenotypes (e.g., survival or relapse, and the
scoring of health behaviour-related preferences)
are common in genome-wide association studies.
Therefore, the association between phenotypes and
genotypes can be modelled as quantized systems.
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ii) Lithology Classification [2]: New well-logging lithol-
ogy classification methods based on inaccurate
quantized observations receive increasing atten-
tion in recent years. Compared with traditional
methods based on core recovery or well-log analy-
sis, the quantized observation-based methods have
advantages of low labour cost and low time cost.

iii) Air-to-Fuel Ratio Control [3]: In heated exhaust gas
oxygen sensors, the voltage outputs shapely change
their value when the air-to-fuel ratio exceeds a cer-
tain threshold. Therefore, heated exhaust gas oxy-
gen sensors can be treated as binary sensors.

More practical examples of the quantized systems are
referred to [4]. To analyze and control such systems well,
it is necessary to investigate the identification problem
of quantized systems.

However, the quantized system identification problem is
difficult because of the little information contained in
the quantized observations. There are mainly three tech-
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niques to overcome the difficulty. The first technique is to
design adaptive quantizers. For example, by properly ad-
justing thresholds in quantizers, [5–7] propose sign-error
type identification algorithms. The second technique is
based on the statistical characteristic of noises. For ex-
ample, by using the full knowledge on noise distribution,
[4, 8] propose empirical measurement methods, [9, 10]
propose maximum likelihood methods, and [11–13] pro-
pose recursive projection methods. The third technique
is to use strongly exciting inputs. For example, [14, 15]
consider independent and identically distributed (i.i.d.)
and sufficiently rich inputs, and proposes a stochastic
approximation (SA) algorithm with expanding trunca-
tions.

It is worth mentioning that, for practical use, these three
techniques have their own limitations. For the first tech-
nique, adaptive quantizers are not common in practical
scenarios. Instead, many practical quantizers are fixed
[1–3]. For the second technique, full knowledge of noise
distribution is hard to be known in practice, since, for
example, the variance of noises is often unavailable. For
the third technique, strong input assumptions limit the
application of the algorithms. Therefore, this paper con-
siders fixed quantizers, and tries to investigate the iden-
tification problem under weaker assumptions on inputs,
noises, and the unknown system parameter.

The identification problem of quantized systems has
been widely investigated under different excitation con-
ditions on inputs [4–6, 11–13, 16–21]. Excitation condi-
tions can be classified as persistently exciting (PE) ones
and non-persistently exciting (non-PE) ones. For exam-
ple, when the inputs are deterministic, [17, 19, 20] as-
sume the inputs to be periodic and full rank. [11, 16, 18]
extend the results to the uniform PE input case. Fur-
thermore, [9, 12] consider general PE conditions. When
the inputs are stochastic, [21] assumes the inputs to be
strong-mixing and sufficiently rich. [5] simultaneously
considers deterministic and stochastic inputs, and give
corresponding PE condition. Excitation conditions in
all these works are PE conditions. On the other hand,
[13] considers a non-PE condition, because the non-PE
condition is more general and easier to be guaranteed
in feedback control systems.

There are a series of important achievement in identi-
fying quantized systems without the full knowledge of
noise distribution [14, 19, 20, 22]. Under periodic inputs,
[19, 20] figure out that a parameterizable model of noise
distribution is necessary to obtain the unknown system
parameter in quantized systems. Then, they propose em-
pirical measurement methods to identify the system pa-
rameter and the noise parameters. Specially, [20] shows
that when the noise is Gaussian with unknown variance
and mean value, the unknown system parameter and
noise parameters are not jointly identifiable. [22] con-
siders the Gaussian noises with unknown variance and
zero mean, and proposes an offline maximum likelihood

algorithm to jointly identify the system parameter and
the variance. [14] also considers the Gaussian noises with
unknown variance and zero mean, and proposes an SA
algorithm with expanding truncations to jointly identify
the system parameter and the threshold in quantizers.

A prior knowledge on system parameter is required in
some identification methods for quantized systems [9,
13, 21]. For example, [21] points out that to accurately
identify the quantized system, the norm of the system
parameter should be known a priori in the noise-free and
zero threshold case. [9, 13] propose an online maximum
likelihood algorithm and an adaptive projection-based
algorithm, respectively. To prove the strong consistency
of the algorithms, they assumes that the unknown pa-
rameter is in a known compact set. There are important
attempts in identifying the quantized systems without a
priori knowledge on parameter range [5, 14, 18, 23]. For
example, [18, 23] propose identification algorithms with-
out truncations or projections. They prove the conver-
gence of the algorithms by estimating distribution tails
of the algorithms. Besides, [5, 14] introduce expanding
truncations. The design of such truncations does not rely
on a priori knowledge for the range of unknown param-
eter.

Despite the remarkable progress in the identification
methods for quantized systems, there are still important
issues deserving to be investigated. Firstly, when the
noise is Gaussian with unknown noise variance andmean
value, the joint identifiability of the unknown system
parameter and noise parameters in the multi-threshold
quantizer case still remains an open problem. Secondly,
[13] gives a non-PE condition for the identification prob-
lem of quantized systems, but the condition is not suffi-
cient to obtain the unknown parameter when the noise
variance and mean value are both unknown. Therefore,
it seems that a new non-PE condition is needed on in-
puts when there are unknown noise parameters. Thirdly,
although [5, 14, 18, 23] do not require a prior knowledge
on unknown parameter, their techniques are difficult to
extend to the non-PE input case. Therefore, we should
develop new techniques for the problem.

The paper proposes a decomposition-recombination
identification algorithm to jointly identify the unknown
system parameter and the Gaussian noise parameters
in the quantized system. The main contributions of this
paper can be summarized as follows:

i) We prove that the unknown system parameter and
noise parameters are jointly identifiable if and only
if there are at least two thresholds in quantizers
when the noises are Gaussian with unknown vari-
ance and mean value. Therefore, for the identifica-
tion problems of quantized systems, the zero-mean
assumption [14, 22] can be removed by increasing
threshold numbers.
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ii) The excitation condition for the inputs is non-PE,
which is weaker than the PE condition commonly
adopted in existing literature [9, 14, 19, 20]. Under
the non-PE condition, the strong consistency and
the Lp convergence are achieved. Besides, the al-
most sure convergence rates is obtained under PE
condition and a class of non-PE conditions. The al-
most sure convergence rates are consistent with the
best ones for the classical SA-based identification
algorithms [24–26].

iii) Any a priori knowledge on the range of unknown
system parameter is not required for the conver-
gence of the proposed algorithm. A new almost
sure boundedness analysis technique based on an
auxiliary stochastic process is proposed to achieve
this goal. The new technique has wider applicabil-
ity compared with existing ones [18, 23], because it
does not rely on any excitation condition on inputs.

The rest of the paper is organized as follows. Section 2
formulates the identification problems. Section 3 gives
the equivalent condition of the joint identifiability for the
unknown system parameter and noise parameters. Sec-
tion 4 proposes the joint identification algorithm. Sec-
tion 5 analyzes the convergence properties of the pro-
posed algorithm. Section 6 uses a numerical example to
demonstrate the main results. Section 7 gives conclud-
ing remarks and future works.

Notation. In the rest of the paper,R andRn are the sets
of real numbers and n-dimensional real vectors, respec-
tively. I{·} denotes the indicator function, whose value
is 1 if its argument (a formula) is true, and 0, other-
wise. Given positive integer p, ∥x∥p is the Lp norm for
vector x. Specially, ∥x∥2 is abbreviated as ∥x∥. ∥A∥ is
the matrix Euclidean norm for matrix A. In is an n× n
identity matrix. ⌊x⌋ is the largest integer that is smaller
than or equal to x ∈ R. diag{·} is the diagonal ma-
trix of the corresponding numbers. col{·} is the column
matrix stacked by the corresponding matrices. rank(·) is
the rank of the corresponding matrix. For square ma-

trices Al, . . . , Ak, denote
∏k

i=lAi = Ak · · ·Al for k ≥ l.
Given two sequences {ak} and {bk}, denote ak = O(bk)
if there is a bounded ck such that ak = ckbk for all k.

2 Problem formulation

This section will formulate the joint identification prob-
lem for quantized systems. Consider the following sys-
tem:

yk = ϕ⊤k θ + dk, k ≥ 1, (1)

where θ ∈ Rn is the unknown constant system parame-
ter. {yk} and {dk} are the sequences of the unobserved
system outputs and the system noises, respectively. The
regressor ϕk is a function of system input sequence {uk}.
One of the examples of the system (1) is the finite im-

pulse response system, where ϕk = [uk . . . uk−n+1]
⊤.

The system output yk cannot be obtained accurately, but
can be measured by a quantized sensor with q thresholds
−∞ < C1 < · · · < Cq < ∞. Therefore, the measure-
ment of yk can be represented as

zk =

q∑
i=1

I{yk>Ci} =


0, if yk ≤ C1;

1, if C1 < yk ≤ C2;
...

...

q, if Cq < yk.

(2)

Remark 2.1 (2) is an alternative representation of the
finite-level quantizer [8, 27, 28]. The output set of the
quantizer {0, . . . , q} can be replaced by any finite set with
q elements [7, 22].

Remark 2.2 (2) gives a general form of finite-level fixed
quantizers. Examples of the quantizers include binary-
valued quantizers [4], finite-level uniform quantizers [29],
and the finite-level logarithmic quantizers [30].

The noise sequence {dk} is assumed to be i.i.d. Gaus-
sian with unknown variance σ2 and mean value µ. When
q = 1, [20] shows that θ, σ2 and µ is not jointly identi-
fiable. Therefore, existing literature [14, 22] always as-
sumes that the mean value µ is known to be zero. How-
ever, the mean value µ is not always available. Then, is
it possible to jointly identify θ, σ2 and µ when q ≥ 2? If
so, how to design the joint identification algorithm?

3 Joint identifiability

The section will discuss the joint identifiability for the
system parameter and the noise parameter.

Suppose that the cumulative distribution function F (x)
for the noise dk can be parameterized by a vector α, and
thereby can be written as F (x;α). Then, we extend the
definition of joint identifiability for the system param-
eter θ and the noise parameter α in [20] to the multi-
threshold quantizer case.

Definition 1 (Joint identifiability) For given thresh-
olds C1 < C2 < · · · < Cq, the system parameter θ and
the noise parameter α are said to be jointly identifi-
able if there exists a positive integer k and a sequence
{ϕ1, . . . , ϕk} such that

F(θ;α) =
[
F (C1 − ϕ⊤1 θ;α) · · · F (C1 − ϕ⊤k θ;α)

· · · F (Cq − ϕ⊤1 θ;α) · · · F (Cq − ϕ⊤k θ;α)
]⊤

is injective as a function of θ and α.

Then, consider Gaussian noise distribution with zero
mean and variance σ2. The following theorem gives
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an equivalent condition of the joint identifiability
for the system parameter θ and the noise parameter
α = [µ σ2]⊤.

Theorem 3.1 For Gaussian cumulative distribution
function F (x; [µ σ2]), assume that σ2 > 0. Then, the
system parameter θ and the noise parameter [µ σ2] are
jointly identifiable if and only if q ≥ 2.

Proof. Since [20] has proved that θ and [µ σ2] are not
jointly identifiable when q = 1, it suffices to prove the
joint identifiability when q ≥ 2.

Now, we prove that if

k∑
t=1

[
ϕtϕ

⊤
t ϕt

ϕ⊤t 1

]
(3)

is positive definite, then F(θ; [µ σ2]) is injective.

Denote F0(·) and f0(·) as the cumulative distribution
function and density function of the standard Gaussian
distribution. Note that F (x; [µ σ2]) = F0

(
x−µ
σ

)
. Then,

one can get

∂

∂[θ⊤, µ, σ]⊤
F(θ; [µ σ2])

=diag {f1,1, . . . , f1,k, . . . , fq,1, . . . , fq,k} col {Ξ1, . . . ,Ξq} .

where fi,k = f0

(
Ci−ϕ⊤

k θ−µ
σ

)
and

Ξi = − 1

σ


ϕ⊤1 1

C1−ϕ⊤
1 θ−µ
σ

...
...

...

ϕ⊤k 1
C1−ϕ⊤

k θ−µ
σ

 .

Note that−σΞi


In θ

1 µ

σ

=

ϕ⊤1 1 Ci

...
...

...

ϕ⊤k 1 Ci

. Then, by the po-
sitive definiteness of (3), rank (col{Ξ1, . . . ,Ξq}) = n+1.

Hence, by the inverse function theorem and the rank
theorem (Theorems 8.6.1 and 8.6.2 of [31]), one can get
F(θ, [µ σ2]) is injective, which implies that θ and [µ σ2]
are jointly identifiable when q ≥ 2. □

Remark 3.1 Although θ, σ2 and µ are not jointly iden-
tifiable if q = 1, Theorem 3.1 shows that they can become
jointly identifiable when increasing threshold number q.
Similar phenomena also occur in other types of cumula-
tive distribution functions. For example, if the noise is
uniformly distributed with unknown upper bound b̄ and
lower bound b, then θ, b̄ and b are jointly identifiable if
and only if q ≥ 2.

4 Joint identification algorithm

This sectionwill propose a decomposition-recombination
algorithm to jointly identify the system parameter θ,
the variance σ2 and the mean value µ.

1) Decomposition. We decompose the q-threshold
quantized system with unknown noise variance and
mean value into several binary-valued sub-systems
with known noise distribution. By (2), we have
zk =

∑q
i=1 si,k, where

si,k =I{yk>Ci} = I{
ϕ⊤
k

θ
σ−Ci

σ +µ
σ+

dk−µ

σ >0
}

=I{φ⊤
i,k

ϑ+dk>0} = I{yi,k>0},

where

ϑ =
[
θ
σ

1
σ

µ
σ

]⊤
, dk = dk−µ

σ ,

φi,k =
[
ϕ⊤k −Ci 1

]⊤
, yi,k = φ⊤

i,kϑ+dk.
(4)

Then, the quantized system (1)-(2) can be decomposed
into q binary-valued sub-systems{

yi,k = φ⊤
i,kϑ+dk,

si,k = I{yi,k>0},
i = 1, . . . , q. (5)

In binary-valued sub-systems (5), {dk} is a standard
Gaussian noise sequence. Besides, the unknown sys-
tem parameters θ and the variance of noise σ2 can be
uniquely determined by ϑ. Therefore, the decomposi-
tion transforms the identification problem into one with
known noise distribution.

Remark 4.1 Similar decomposition technique can be
applied in other type of noises, such as the Laplacian
noise [32].

2) Recombination. We use the innovations of binary-
valued sub-systems (5) to update the estimate of ϑ based
on SA method.

For the i-th sub-system of (5), consider the instanta-

neous quadratic error êi,k(ϑ̂) = (si,k −F0(φ
⊤
i,kϑ̂))

2. The

gradient of êi,k at ϑ̂ = ϑ̂k−1 is in the opposite direction

of φi,k(si,k−F0(φ
⊤
i,kϑ̂k−1)). By combining the gradients

of êi,k for all sub-systems, we update the estimate of ϑ
as follows:

{
ϑ̂k = ϑ̂k−1 +

1
k (
∑q

i=1 βiφi,kŝi,k) ,

ŝi,k = si,k − F0(φ
⊤
i,kϑ̂k−1),

(6)

where β1, . . . , βq are all positive coefficients.
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Remark 4.2 For the traditional systems with observ-
able output sequence {yk}, [24–26] adopt the step-size

1/rk, where rk = 1 +
∑k

t=1 ∥ϕt∥
2
. This is because when

∥ϕk∥ is small, there is little information on θ contained
in yk. At this point, we should reduce the impact of rel-
evant data ϕk and yk on the algorithm estimate. But in
the quantized output case, even when ∥ϕk∥ is small, zk
contains the information on the noise variance σ2 and
the mean value µ, which is an important knowledge to
identify θ. Therefore, we replace the step-size 1/rk with
1/k in (6).

Remark 4.3 Since
∑∞

k=1
1
k = ∞ and

∑∞
k=1

1
k2 <∞, 1

k
is a stochastic approximation step-size [33], and is com-
monly adopted in identification algorithms [5, 7, 18]. By∑∞

k=1
1
k = ∞, our estimate ϑ̂k has the ability to reach

any point in the whole space. Therefore, the algorithm (6)
can be used identify any ϑ ∈ Rn+2. Besides, the step-size
should converge to 0, because by Cauchy criterion [31],

the convergence of ϑ̂k necessarily implies that ϑ̂k − ϑ̂k−1

converges to 0.

5 Main results

This section will prove the convergence properties of
the decomposition-recombination algorithm (4)-(6). For

convenience, denote ϑ̃k = ϑ̂k − ϑ.

5.1 Assumption

This subsection will give assumptions for the noises,
quantizers, and the regressors.

Assumption 1 The noise sequence {dk} is assumed to
be i.i.d. Gaussian with positive variance.

Assumption 2 There exist at least two thresholds in the
quantized observation (2).

Remark 5.1 By Theorem 3.1, Assumption 2 is neces-
sary for the joint identifiability.

Assumption 3 There exists M > 0 such that for all
k ≥ 1, ∥ϕk∥ ≤ M almost surely, and E∥ϕk∥p ≤ Mp for
any positive integer p. Besides, ϕk is independent of dt
for all t ≥ k.

Remark 5.2 The boundedness assumption on {ϕk} is
commonly required for the online identification algo-
rithms of quantized systems [5, 6, 9, 13].

Assumption 4 The regressor sequence {ϕk} satisfies
that there exist k0 ∈ N and δ > 0 such that for all k ≥ k0,

1

k

k∑
t=1

[
ϕtϕ

⊤
t ϕt

ϕ⊤t 1

]
≥ δ (ln k)

−1/3
In+1, a.s. (7)

Remark 5.3 Assumption 4 is weak among exist-
ing literature. Many existing works [9, 12, 16] con-
sider the PE condition, i.e., for any θ, θ⋆ ∈ Rn,

lim
k→∞

1
k

∑k
t=1(ϕ

⊤
t θ − ϕ⊤t θ

⋆)2 = 0 implies θ = θ⋆ [9].

The condition is rather weak for the open-loop systems.
But in closed-loop systems, it is hard to guarantee PE
conditions and meanwhile to enable yk to track non-
persistently exciting references [13, 34]. This limits the
application of the identification algorithm on, for exam-
ple, the adaptive tracking control problems. Therefore, it
is important to identify the unknown parameters when
{ϕk} is non-PE. The condition (7) is non-PE. This

is because under (7), 1
k

∑k
t=1 ϕtϕ

⊤
t is allowed to con-

verge to zero at the rate of O
(
(ln k)−1/3

)
. In this case,

lim
k→∞

1
k

∑k
t=1(ϕ

⊤
t θ − ϕ⊤t θ

⋆)2 = 0 holds for any θ and θ⋆.

Remark 5.4 The non-PE condition (7) is inspired by
the condition for the unquantized case in [26, 35]

lim sup
k→∞

λmax

(∑k
t=1 ϕtϕ

⊤
t

)
(ln rk)

1/3
λmin

(∑k
t=1 ϕtϕ

⊤
t

) <∞, (8)

where rk is given in Remark 4.2, and λmax (·) and λmin (·)
are the maximum and minimum eigenvalues of the cor-
responding matrix, respectively. This seems the weakest
excitation condition for the convergence of SA algorithms
when yk can be accurately observed. However, when the
mean value µ is unknown, the condition (8) is not suf-
ficient to identify θ. Hence, we change the condition (8)
accordingly, and give the non-PE condition (7).

Remark 5.5 Assumption 4 is easy to be satisfied for
open-loop and closed-loop system case. Especially, for
closed-loop systems, one can use the attenuating excita-
tion technique [36] such that Assumption 4 holds.

5.2 Convergence analysis

This section will analyze the strong consistency and
the almost sure convergence rate of the decomposition-
recombination algorithm (4)-(6).

The proof of the strong consistency consists of three
steps.

Firstly, we give the almost sure boundedness of ϑ̂k.

Lemma 5.1 Under Assumptions 1-3, the estimate ϑ̂k
given by Algorithm (4)-(6) is bounded almost surely.

Proof. Define

Wk =

∑k
t=1

∑q
i=1 βiφi,t

(
si,k − F0(φ

⊤
i,kϑ)

)
k

. (9)
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Then, by the law of iterated logarithm [37], it holds that

Wk = O
(√

ln ln k/k
)
almost surely.

Consider the stochastic process ψk = ϑ̂k −Wk. Then,
by (6) and the continuity of F0(·), one can get

ψk=ψk−1 +
1

k

(
q∑

i=1

βiφi,k

(
F0(φ

⊤
i,kϑ)− F0(φ

⊤
i,kϑ̂k−1)

))

+O

(
Wk−1

k

)
=ψk−1 +

1

k

(
q∑

i=1

βiφi,k

(
F0(φ

⊤
i,kϑ)− F0(φ

⊤
i,kψk−1)

))

+O

(√
ln ln k

k3

)
, a.s. (10)

By the monotonicity of F0(·), it holds that(
φ⊤
i,k (ψk−1 − ϑ)

) (
F0(φ

⊤
i,kϑ)− F0(φ

⊤
i,kψk−1)

)
≤ 0,

which together with (10) implies

∥ψk − ϑ∥2 ≤ ∥ψk−1 − ϑ∥2 +O

(√
ln ln k

k3

)
, a.s.

Then, ψk is bounded almost surely, which together with

∥ϑ̂k∥ ≤ ∥ψk∥+ ∥Wk∥ implies the lemma. □

Remark 5.6 Because the step-size 1
k satisfies

∑∞
k=1

1
k =

∞, Algorithm (4)-(6) is not uniformly bounded. There-
fore, it is difficult to analyze the almost sure boundedness
of the algorithm. To overcome the difficulty, [11, 13, 38]
introduce projections to restrict the search region of the
algorithms in a known compact set. The projected algo-
rithms are thereby uniformly bounded. In these works,
the unknown system parameter is assumed to be located
in the compact set for the convergence analysis. Such
a priori knowledge is not always available. To remove
the assumption, [18, 23] estimate the distribution tail
of the algorithms. By using this technique, they prove
that the probability of the estimates falling outside any
neighborhood of the true value converging to 0. But, the
technique requires periodic inputs or uniform PE inputs.
In Lemma 5.1, a new technique is developed. An auxil-
iary stochastic process ψk is constructed to obtain the
almost sure boundedness. This technique has wider ap-
plicability. Neither any a priori knowledge on the range
of the unknown parameter nor any excitation conditions
on inputs are required.

Secondly, we estimate the matrix

Φ(k, t) =

k∏
s=t+1

(
In+2 −

q∑
i=1

βif̌i,sφi,sφ
⊤
i,s

s

)
,

where

f̌i,k =

−F0(φ
⊤
i,kϑ)−F0(φ

⊤
i,kϑ̂k−1)

φ⊤
i,k

ϑ̃k−1
, if φ⊤

i,kϑ̃k−1 ̸= 0;

f0(φ
⊤
i,kϑ), if φ⊤

i,kϑ̃k−1 = 0.

Lemma 5.2 For the quantized system (1)-(2) with As-
sumptions 1-3, suppose there exist k0 ∈ N, δ > 0 and
η ∈ [0, 13 ] such that for all k ≥ k0,

1

k

k∑
t=1

[
ϕtϕ

⊤
t ϕt

ϕ⊤t 1

]
≥ δ (ln k)

−η
In+1, a.s. (11)

Then, there is a positive constant m such that

∥Φ(k, k0)∥

=

{
O
(
exp

(
−m(ln k)1−3η

))
, if 0 ≤ η < 1

3 ;

O
(

1
(ln k)m

)
, if η = 1

3 ,
a.s.

Proof. The proof is inspired by Theorem 2.3.1 and Corol-
lary 2.3.1 in [35].

The proof consists of four parts. Firstly, we show that
there is a positive lower bound for f̌i,k. Secondly, we give
an increasing sequence {tl} such that

tl−1∑
t=tl−1

q∑
i=1

βif̌i,kφi,tφ
⊤
i,t

t
> In+2, a.s. (12)

Thirdly, we estimate the upper bound of the ma-

trix
∑tl−1

t=tl−1

∑q
i=1

βif̌i,kφi,tφ
⊤
i,t

t . Finally, we estimate

∥Φ(tl − 1, tl−1 − 1)∥ and further ∥Φ(k, k0)∥.

Part 1.By the definition of f̌i,k and the Lagrange’s finite-
increment theorem (Theorem 5.3.1 in [31]), there exists

an x between φ⊤
i,kϑ and φ⊤

i,kϑ̂k−1 such that f̌i,k = f0(x),
which further implies

f̌i,k ≥ min
{
f0(φ

⊤
i,kϑ), f0(φ

⊤
i,kϑ̂k−1)

}
.

By Lemma 5.1, ϑ̂k−1 is bounded almost surely. And by
Assumption 3, φi,k is bounded almost surely. Therefore,

there exists f > 0 such that f̌i,k > f for all i and k
almost surely.

Part 2. Due to the concavity of (ln t)1−η, given any ε ∈
(0, 1), there exists a sufficiently large N such that εt > 1
and (ln(t − 1))1−η ≥ (ln t)1−η − 1 for all t ≥ t0, t0 =

⌊exp(N
1

1−η )⌋ > k′ ≥ k0 + 2.
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Let tl = ⌊exp((N + αl)
1

1−η )⌋, where

α > 1 +
1− η

δ(1− ε)

 1

min
i=1,...,q

βif
+ q

 .

Then, we have

(ln tl)
1−η − (ln tl−1)

1−η

=
(
ln⌊exp((N + αl)

1
1−η )⌋

)1−η

−
(
ln⌊exp((N + (l − 1)α)

1
1−η )⌋

)1−η

≥
(
ln
(
exp((N + αl)

1
1−η )− 1

))1−η

−
(
ln
(
exp((N + (l − 1)α)

1
1−η )

))1−η

≥α− 1, (13)

and

tl−1∑
t=tl−1

q∑
i=1

φi,tφ
⊤
i,t

t

=

tl−1∑
t=tl−1

q∑
i=1

1

t

(
t∑

s=1

φi,sφ
⊤
i,s −

t−1∑
s=1

φi,sφ
⊤
i,s

)

=

tl∑
t=tl−1+1

t−1∑
s=1

q∑
i=1

φi,sφ
⊤
i,s

t− 1
−

tl−1∑
t=tl−1

t−1∑
s=1

q∑
i=1

φi,sφ
⊤
i,s

t

≥
tl∑

t=tl−1+1

1

(t− 1)t

t−1∑
s=1

q∑
i=1

φi,sφ
⊤
i,s − qIn+2. (14)

By (11) and Lemma A.1 in Appendix A, for all k ≥ k0,

1

k

k∑
t=1

q∑
i=1

φi,tφ
⊤
i,t ≥ δ(ln k)−ηIn+2, a.s., (15)

which together with (13) and εt > 1 implies

tl−1∑
t=tl−1

q∑
i=1

φi,tφ
⊤
i,t

t

≥

 tl∑
t=tl−1+1

δ
t− 1

t
· (ln(t− 1))−η

t− 1
− q

 In+2

≥

δ(1− ε)

tl∑
t=tl−1+1

(
(ln t)1−η

1− η
− (ln(t− 1))−η

1− η

)
− q

In+2

=

(
δ(1− ε)

(
(ln tl)

1−η

1− η
− (ln tl−1)

1−η

1− η

)
− q

)
In+2.

Hence, by (13), we have

tl−1∑
t=tl−1

q∑
i=1

φi,tφ
⊤
i,t

t
≥
(
δ(1− ε)

1− η
(α− 1)− q

)
In+2

>
1

min
i=1,...,q

βif
In+2, a.s.,

which further implies (12).

Part 3. Note that f̌i,k ≤ f(0) and ∥φi,k∥2 ≤ M2 +
max

i=1,...,q
C2

i . Then, it holds that

tl−1∑
t=tl−1

q∑
i=1

βif̌i,kφi,tφ
⊤
i,t

t

<tr

 tl−1∑
t=tl−1

q∑
i=1

βif̌i,kφi,tφ
⊤
i,t

t

 In+2

<

tl−1∑
t=tl−1

B

t
In+2 < B (ln(tl − 1)− ln(tl−1 + 1) + 2) In+2

=B
(
ln(⌊exp((N + αl)

1
1−η )⌋ − 1)

− ln(⌊exp((N + (l − 1)α)
1

1−η )⌋+ 1) + 2
)
In+2

<B
(
2 + (N + αl)

1
1−η − (N + (l − 1)α)

1
1−η

)
In+2

<
2α

1− η
B (N + αl)

η
1−η In+2, a.s., (16)

where B = max
i=1,...,q

βif0(0)

(
M2 + max

i=1,...,q
C2

i

)
.

Part 4. By (12), (16), and Lemma 2.3.1 in [35], we have

∥Φ(tl − 1, tl−1 − 1)∥

≤

1− 1

2 + 8α2

(1−η)2 (n+ 1)2B2 (N + αl)
2η

1−η

 1
2

, a.s.,

which together with Lemma A.2 in Appendix A implies
that there exists an m > 0 such that

∥Φ(k, k0)∥

≤∥Φ(t0 − 1, k0)∥ ·
⌊ (ln k)1−η−N

α ⌋∏
l=1

∥Φ(tl − 1, tl−1 − 1)∥

≤
⌊ (ln k)1−η−N

α ⌋∏
l=1

1− 1

2 + 8α2

(1−η)2 (n+ 1)2B2 (N + αl)
2η

1−η

 1
2

=

{
O
(
exp

(
−m(ln k)1−3η

))
, if 0 ≤ η < 1

3 ;

O
(

1
(ln k)m

)
, if η = 1

3 ,
a.s.

The proof is completed. □
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Remark 5.7 To achieve the convergence of Φ(k, k0),
[18] requires the uniform PE condition, i.e., there exist
k0, κ ∈ N and δ > 0 such that for all k ≥ k0,

1

κ

k∑
t=k−κ+1

ϕtϕ
⊤
t ≥ δ. (17)

The idea is to approximately treat the matrix Φ(k, k−κ)
as a positive definite matrix whose eigenvalues are all
less that 1 − β∗/k for some constant β∗ > 0. However,
the technique relies on the condition (17), and is thereby
hard be to applied in the non-PE condition (7) case. The
difficulty is solved by adopting the exponential segmenta-

tion tl = ⌊exp((N + αl)
1

1−η )⌋, which is inspired by [35].

Thirdly, we give the strong consistency of the algorithm
using Lemmas 5.1 and 5.2.

Theorem 5.1 For the quantized system (1)-(2), as-
sume that Assumptions 1-4 hold. Then, the estimate

ϑ̂k given by the decomposition-recombination algorithm
(4)-(6) converges to the true parameters ϑ almost surely.

Proof. Since ϑ̃k = ϑ̂k − ϑ, we have

ϑ̃k =ϑ̃k−1 +
1

k

(
q∑

i=1

βiφi,k

(
si,k − F0(φ

⊤
i,kϑ̂k−1)

))

=

(
In+2 −

q∑
i=1

βif̌i,kφi,kφ
⊤
i,k

k

)
ϑ̃k−1

+

q∑
i=1

βiφi,k

k

(
si,k − F0(φ

⊤
i,kϑ)

)
=Φ(k, k0)ϑ̃k0

+

k∑
t=k0+1

Φ(k, t)

q∑
i=1

βiφi,t

t

(
si,t − F0(φ

⊤
i,tϑ)

)
. (18)

By Lemma 4 in [23], it holds that

∥Φ(k, t)∥ ≤ ∥Φ(k, k0)∥
∥∥Φ(t, k0)−1

∥∥
≤∥Φ(k, k0)∥ ·

t∏
s=k0+1

∥∥∥∥∥∥
(
In+2 −

q∑
i=1

βif̌i,sφi,sφ
⊤
i,s

s

)−1
∥∥∥∥∥∥

≤∥Φ(k, k0)∥ ·
t∏

s=k0+1

(
1− qB

s

)−1

= O
(
∥Φ(k, k0)∥ tqB

)
,

a.s. (19)

where B is defined in (16).

Denote

Sk =

k∑
t=k0+1

q∑
i=1

βiφi,t

t

(
si,t − F0(φ

⊤
i,tϑ)

)
.

By Lemma A.3 in Appendix A, there exists a ran-
dom variable S such that lim

k→∞
Sk = S and lim

k→∞
S−
k =

O
(√

ln ln k/k
)

almost surely, where S−
k = Sk − S.

Then, by (19), we have∥∥∥∥∥
k∑

t=k0+1

Φ(k, t)

q∑
i=1

βiφi,t

t

(
si,t − F0(φ

⊤
i,tϑ)

)∥∥∥∥∥
=

∥∥∥∥∥
k∑

t=k0+1

Φ(k, t)
(
S−
t − S−

t−1

)∥∥∥∥∥
=

∥∥∥∥∥S−
k − Φ(k, k0)S

−
k0

+

k−1∑
t=k0

(Φ(k, t)− Φ(k, t+ 1))S−
t

∥∥∥∥∥ ,
which implies∥∥∥∥∥

k∑
t=k0+1

Φ(k, t)

q∑
i=1

βiφi,t

t

(
si,t − F0(φ

⊤
i,tϑ)

)∥∥∥∥∥
=O

(√
ln ln k

k
+ ∥Φ(k, k0)∥

)

+

∥∥∥∥∥
k−1∑
t=k0

Φ(k, t+ 1)

(
q∑

i=1

βif̌i,t+1φi,tφ
⊤
i,t

t+ 1

)
S−
t+1

∥∥∥∥∥
=O

(√
ln ln k

k
+ ∥Φ(k, k0)∥

)

+O

(
k−1∑
t=k0

∥Φ(k, t+ 1)∥
√

ln ln t

t3

)
, a.s. (20)

Define

τ(k) = max

[
t :

√
ln ln t

t1+2qB
> ∥Φ(k, k0)∥

]
.

Then, by Lemma 5.2, we have lim
k→∞

∥Φ(k, k0)∥ = 0 al-

most surely, which implies lim lim
k→∞

τ(k) = ∞ almost

surely. Besides, one can get

∥Φ(k, k0)∥ ≥
k∏

s=k0+1

(
1−

q∑
i=1

βif̌i,s ∥φi,s∥2

s

)

≥
k∏

s=k0+1

(
1− qB

s

)
, a.s.

which together with Lemma 4 in [23] implies that
Φ(k, k0) is of the same order as 1

kqB . Therefore,√
ln ln k
k1+2qB < ∥Φ(k, k0)∥ for sufficiently large k. Then, by

the definition of τ(k), we have τ(k) < k for sufficiently
large k.
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By (19), we have

k−1∑
t=k0

∥Φ(k, t+ 1)∥
√

ln ln t

t3

≤
τ(k)−1∑
t=k0

∥Φ(k, τ(k))∥
√

ln ln t

t3
+

k−1∑
t=τ(k)

√
ln ln t

t3

=O

(
∥Φ(k, τ(k))∥+

√
ln ln τ(k)

τ(k)

)

=O

(
∥Φ(k, k0)∥ τ(k)qB +

√
ln ln τ(k)

τ(k)

)
, a.s. (21)

By the definition of τ(k), for sufficiently large k,

τ(k)−
1
4−qB >

√
ln ln τ(k)

τ(k)1+2qB

> ∥Φ(k, k0)∥ ≥

√
ln ln(τ(k) + 1)

(τ(k) + 1)1+2qB
, a.s.,

which together with (21) implies for sufficiently large k,

k−1∑
t=k0

∥Φ(k, t+ 1)∥
√

ln ln t

t3
=O

(
∥Φ(k, k0)∥

1
4qB+1

)
,

a.s. (22)

By (18), (20) and (22), one can get

∥ϑ̃k∥ = O

(√
ln ln k

k
+ ∥Φ(k, k0)∥min{1, 1

4qB+1}
)
, a.s.

(23)

Then, the theorem can be proved by Lemma 5.2. □

The following theorem gives the almost sure convergence
rates of the decomposition-recombination algorithm (4)-
(6) under a class of excitation conditions.

Theorem 5.2 For the quantized system (1)-(2), assume
that Assumptions 1-3 and the excitation condition (11)
hold. Then, there exists a positive constant m such that

∥ϑ̃k∥ =

{
O
(
exp

(
−m(ln k)1−3η

))
, if 0 ≤ η < 1

3 ;

O
(

1
(ln k)m

)
, if η = 1

3 ,
a.s.

Proof. By Theorem 5.1, we have

lim
k→∞

f̂i,k= f0(φ
⊤
i,kϑ) ≥ f0

(√
M2 + max

i=1,...,q
C2

i ∥ϑ∥

)
, a.s.

Therefore, given any ε > 0, there exists k′ such that for

all k ≥ k′, f̌i,k > f0

(√
M2 + max

i=1,...,q
C2

i ∥ϑ∥
)
−ε almost

surely. Then, the theorem can be proved by Lemma 5.2
and (23). □

Remark 5.8 Theorem 5.2 demonstrates that the con-
vergence rate of the algorithm (4)-(6) is related to the
excitation condition on the inputs. When η = 1

3 , the
condition (11) is Assumption 4. The condition is weak-
est among existing SA-based identification algorithms
[11, 14, 18]. Under the condition, the algorithm (4)-(6)
can achieve convergence, and a logarithmic convergence
rate can be obtained. This is consistent with the unquan-
tized case [26]. When η = 0, the condition (11) is PE.
Under the PE condition, the algorithm (4)-(6) converges
at a polynomial rate almost surely. Besides, under uni-
form PE condition (17), similar to [18], the algorithm
(4)-(6) can achieve an almost sure convergence rate of

O(
√
ln ln k/k), which is the best among existing identifi-

cation algorithms for quantized systems [11, 13, 14].

Now, we analyzes the Lp convergence for any positive
integer p of the decomposition-recombination algorithm
(4)-(6). The proof consists of three steps.

Firstly, we proves the Lp boundedness of the algorithm.

Lemma 5.3 Under Assumptions 1-3, for the algorithm
(4)-(6), E∥ϑ̃k∥pp is bounded for any positive integer p.

Proof. Firstly, we prove the boundedness of E∥ϑ̃k∥2r2
for any non-negative integer r. When r = 0, we have
∥ϑ̃k∥02 = 1. When E∥ϑ̃k∥2r−2

2 is bounded, by Lyapunov

inequality [39], E∥ϑ̃k∥s2 is bounded for all s ≤ 2r − 2.
Then, it holds that

E∥ϑ̃k∥2r2

=E

(
∥ϑ̃k−1∥22 +

1

k

q∑
i=1

φ⊤
i,kϑ̃k−1ŝi,k +O

(
1

k2

))r

=E∥ϑ̃k−1∥2r2 +O

(
2r−2∑
s=0

E
∥ϑ̃k−1∥s2
k2r−s

)

+
r

k

q∑
i=1

E
[
∥ϑ̃k−1∥2r−2

2 φ⊤
i,kϑ̃k−1

(
F0(φ

⊤
i,kϑ)− F0(φ

⊤
i,kϑ̂)

)]
≤E∥ϑ̃k−1∥2r2 +O

(
1

k2

)
,

which implies the boundedness of E∥ϑ̃k∥2r2 .

Denote ϑ̃k,j as the j-th component of ϑ̃k. Then, we have

E∥ϑ̃k∥2r2r = E

n+1∑
j=1

ϑ̃2rk,j

 ≤ E

n+1∑
j=1

ϑ̃2k,j

r

= E∥ϑ̃k∥2r2 .
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Therefore, E∥ϑ̃k∥pp is bounded for all p = 2r, which to-
gether with Lyapunov inequality [39] implies the bound-

edness of E∥ϑ̃k∥pp for all integer p. □

Secondly, we proves the uniform integrability for ∥ϑ̃k∥pp.

Lemma 5.4 If a random sequence {xk} satisfies

supk E ∥xk∥2p2p <∞, then ∥xk∥pp is uniformly integrable.

Proof. By Cr-inequality [35], we have

E∥xk∥2pp = E

(
n∑

i=1

xpk,i

)2

≤ nE
n∑

i=1

x2pk,i = nE∥xk∥2p2p,

where xk,i is the i-th component of xk. Then, the lemma
can be proved by de La Vallée Poussin criterion [40]. □

Corollary 5.1 Under the condition of Lemma 5.3,
∥ϑ̃k∥pp is uniformly integrable for any positive integer p.

Proof. The corollary can be obtained by Lemmas 5.3
and 5.4. □

Lastly, we proves the Lp convergence of the algorithm
using Corollary 5.1.

Theorem 5.3 Under the condition of Theorem 5.1, the

estimate ϑ̂k given by the decomposition-recombination
algorithm (4)-(6) converges to the true parameters ϑ in
the Lp sense for any positive integer p.

Proof. By Theorem 5.1, it holds that ∥ϑ̃k∥pp converges
to 0 almost surely. Then, the theorem can be obtained
by Corollary 5.1 and Theorem 2.6.4 in [39]. □

Remark 5.9 Theorems 5.1 and 5.3 analyze the strong
consistency andLp convergence, respectively. Strong con-
sistency describes the convergence property of the esti-
mates in one random experiment with probability 1. In
some practical engineering scenarios, such as the adap-
tive control problem of drag-free satellites [41], repeated
experiments are difficult to be achieved. In this case, the
strong consistency of the estimates is important to be in-
vestigated. On the other hand, Lp convergence focuses
on the average property of Lp estimation error. When
p = 2, Lp convergence is the mean square convergence,
which further implies the convergence of the estimate’s
variance. In some practical identification problem for
set-valued systems, such as the genome-wide association
studies [1], the estimate’s variance is an important met-
ric for the effectiveness of identification algorithms.

5.3 Known mean value case

When the mean value µ of the noises is known, the joint
identification algorithm is similar to Algorithm (4)-(6)

for the unknown mean value case. The main difference
is that in (4),

ϑ =
[
θ
σ

1
σ

]⊤
, φi,k =

[
ϕ⊤k µ− Ci

]⊤
.

It is worth mentioning that the modified algorithm can
converges to the true value under weaker conditions. For
the quantizer, Assumption 2 can be relaxed as follows.

Assumption 2’ For the quantized observation (2),
there exists at least one thresholdCi that is not equal to µ.

For the excitation condition, Assumption 4 can be also
relaxed.

Assumption 4’ When q = 1, the regressor sequence
{ϕk} satisfies the non-PE condition (7). When q ≥ 2,
{ϕk} satisfies that there exist k0 ∈ N and δ > 0 such that
for all k ≥ k0,

1

k

k∑
t=1

ϕtϕ
⊤
t ≥ δ (ln k)

−1/3
In, a.s. (24)

Similar to Theorems 5.1-5.3 and by Corollary A.1 in Ap-
pendix A, the modified algorithm for the known mean
value case can also achieve almost sure and Lp conver-
gence under Assumptions 1, 2’, 3 and 4’. A similar al-
most sure convergence rate can also be obtained.

6 Simulation

This section will give a numerical example for the main
results. Consider the quantized system (1)-(2), where
q = 2, C1 = 0, and C2 = 3

2 . The unknown system

parameter θ = [2 −2]⊤. For the system noise dk, both

the variance σ2 = 1 and mean value µ = 1 are unknown.

The regressor ϕk = [uk uk−1]
⊤, and the input uk is set

to be 
u3l−2 = 1

2

(
1 + 1

ln1/6(3l−1)

)
;

u3l−1 = 1
2

(
1 + 1

2 ln1/6(3l)

)
;

u3l =
1
2

(
1− 1

ln1/6(3l+1)

)
,

for all positive integer l. We can prove that the re-
gressor ϕk satisfies Assumption 4’. Then, we apply the
decomposition-recombination algorithm (4)-(6) to iden-
tify the unknown system parameter θ, the variance σ2

and themean value µ. The initial values ϑ̂0 = [0 0 0 0]⊤,

and β1 = β2 = 5. For each k, if ϑ̂
(3)
k > 0, the estimates

of θ, σ and µ are
[
ϑ̂
(1)
k /ϑ̂

(3)
k ϑ̂

(2)
k /ϑ̂

(3)
k

]⊤
, 1/ϑ̂

(3)
k , and
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ϑ̂
(4)
k /ϑ̂

(3)
k respectively, where θ̂

(i)
k is the i-th component

of θ̂k. Otherwise, the estimates are set as [0 0]⊤, 0 and 0.

The trajectories of the estimates of θ, σ and µ are shown
in Figures 1-3. All of the estimates converge to the true
values.

Fig. 1. Estimate of θ

Fig. 2. Estimate of σ

Fig. 3. Estimate of µ

7 Conclusion

This paper investigates the identification problem of
quantized systems with a non-PE condition and Gaus-
sian noises with unknown noise variance and mean

value. The equivalent condition of the joint identifiabil-
ity for unknown system parameter and noise parameters
is given. Then, a decomposition-recombination identifi-
cation algorithm is designed for the joint identification
problem. It is shown that the estimates of the algo-
rithm converge to the true values in the almost sure
and Lp sense. The almost sure convergence rates of the
algorithm are also obtained.

For the future research, the results of the paper lay
a foundation for the consensus protocol design under
quantized communications [16, 23]. Besides, the main
results can be extended to the ARMA system case by
applying the technique of [38].

Appendix A Lemmas and corollary

This appendix will give lemmas to prove the convergence
and convergence rates of the algorithm.

Lemma A.1 Under Assumption 2, for any η ≥ 0, the
following two propositions are equivalent.

a) There exist k0 ∈ N and δ > 0 such that for all k ≥ k0,

1

k

k∑
t=1

q∑
i=1

[
ϕtϕ

⊤
t ϕt

ϕ⊤t 1

]
≥ δ(ln k)−ηIn+1, a.s. (A.1)

b) There exist k0 ∈ N and δ′ > 0 such that for all k ≥ k0,

1

k

k∑
t=1

q∑
i=1


ϕtϕ

⊤
t −Ciϕt ϕt

−Ciϕ
⊤
t C2

i −Ci

ϕ⊤t −Ci 1

 ≥ δ′(ln k)−ηIn+2, a.s.

(A.2)

Proof. If (A.2) holds, then we have

q

k∑
t=1


ϕtϕ

⊤
t ϕt 0

ϕ⊤t 1 0

0 0 0



=


In 0 0

0 0 1

0 0 0


 k∑

t=1

q∑
i=1


ϕtϕ

⊤
t −Ciϕt ϕt

−Ciϕ
⊤
t C2

i −Ci

ϕ⊤t −Ci 1




In 0 0

0 0 0

0 1 0


≥δ′k(ln k)−η

[
In+1

0

]
,

which implies

1

k

k∑
t=1

[
ϕtϕ

⊤
t ϕt

ϕ⊤t 1

]
≥ δ

q
(ln k)−ηIn, a.s.
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Therefore, (A.1) holds for δ ≤ δ′/q.

If (A.1) holds, then by denoting ρ = (C2−C1)
2

C2
1+C2

2+2
, we have

(2− ρ)(C2
1 + C2

2 − ρ) = ρ2 + (C1 + C2)
2 > (C1 + C2)

2,
which implies

2ϕtϕ
⊤
t −(C1 + C2)ϕt 2ϕt

−(C1 + C2)ϕ
⊤
t C2

1 + C2
2 −C1 − C2

ϕ⊤t −C1 − C2 2



≥ρ


ϕtϕ

⊤
t 0 ϕt

0 1 0

ϕ⊤t 0 1

+HtH
⊤
t ,

where Ht =
[√

2− ρϕ⊤t −C1+C2√
2−ρ

√
2− ρ

]⊤
. Hence, by

Assumption 2, one can get

q∑
i=1


ϕtϕ

⊤
t −Ciϕt ϕt

−Ciϕ
⊤
t C2

i −Ci

ϕ⊤t −Ci 1



≥


2ϕtϕ

⊤
t −(C1 + C2)ϕt 2ϕt

−(C1 + C2)ϕ
⊤
t C2

1 + C2
2 −C1 − C2

ϕ⊤t −C1 − C2 2



≥ρ


ϕtϕ

⊤
t 0 ϕt

0 1 0

ϕ⊤t 0 1

 ,
which implies for sufficiently large k,

1

k

k∑
t=1

q∑
i=1


ϕtϕ

⊤
t −Ciϕt ϕt

−Ciϕ
⊤
t C2

i −Ci

ϕ⊤t −Ci 1



≥ρ
k

k∑
t=1


In 0 0

0 0 1

0 1 0



ϕtϕ

⊤
t ϕt 0

ϕ⊤t 1 0

0 0 1



In 0 0

0 0 1

0 1 0



≥


In 0 0

0 0 1

0 1 0


[∑k

t=1 ρδ (ln k)
−η
In+1

ρ

]
In 0 0

0 0 1

0 1 0


≥ρδ (ln k)−η

In+2.

Therefore, (A.2) holds for δ′ ≤ ρδ. □

Corollary A.1 Under Assumption 2’, for any η ≥ 0,
the following two propositions are equivalent.

a) When q = 1, the condition (A.1) holds. When q ≥ 2,
there exist k0 ∈ N and δ > 0 such that for all k ≥ k0,

1

k

k∑
t=1

q∑
i=1

ϕtϕ
⊤
t ≥ δ(ln k)−ηIn+1, a.s.

b) There exist k0 ∈ N and δ′ > 0 such that for all k ≥ k0,

1

k

k∑
t=1

q∑
i=1

[
ϕtϕ

⊤
t C̆iϕt

C̆iϕ
⊤
t C̆2

i

]
≥ δ′(ln k)−1/3In+2, a.s.,

where C̆i = µ− Ci.

The proof of Corollary A.1 is similar to that of Lemma
A.1, and thereby omitted here.

Lemma A.2 For 0 < h ≤ 1, J, α > 0, and H,N ≥ 0,
we have

k−1∏
l=t

(
1− 1

H + J(αl +N)h

)

≤


(

H+J(αt+N)
H+J(αk+N)

) 1
Jα

, h = 1;

exp

(
αt+N

αH+α(1−h)J(αt+N)h

)
exp

(
H+J(αt+N)h

αH+α(1−h)J(αt+N)h
· αk+N

H+J(αk+N)h

) , h ∈ (0, 1).

Proof. Note that

k−1∏
l=t

(
1− 1

H + J(αl +N)h

)

=exp

(
k−1∑
l=t

ln

(
1− 1

H + J(αl +N)h

))

≤ exp

(
−

k−1∑
l=t

1

H + J(αl +N)h

)
. (A.3)

Then, when h = 1, it holds that

k−1∑
l=t

1

H + J(αl +N)
≥
∫ k

t

1

H + J(αx+N)
dx

=
1

Jα
(ln (H + J(αk +N))− ln (H + J(αt+N))) ,

which together with (A.3) implies the lemma.

When h ∈ (0, 1), it holds that

k−1∑
l=t

1

H + J(αl +N)h
≥
∫ k

t

1

H + J(αx+N)h
dx. (A.4)
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Note that

αH + α(1− h)J(αt+N)h

H + J(αt+N)h

∫ k

t

1

H + J(αx+N)h
dx

≥
∫ k

t

αH + α(1− h)J(αx+N)h

(H + J(αx+N)h)
2 dx

=
αk +N

H + J(αk +N)h
− αt+N

H + J(αt+N)h
.

Then, the lemma can be proved by (A.3) and (A.4). □

Remark A.1 The proof of Lemma A.2 is inspired by
that of Lemma 3.2 in [32].

Lemma A.3 Assume that {Xk} is a martingale dif-
ference sequence and bounded almost surely. Then,∑k

t=1
Xt

t converges almost surely, and
∑∞

t=k
Xt

t =

O
(√

ln ln k/k
)
almost surely.

Proof. The lemma can be proved by

k2∑
t=k1

Xt

t
=

∑k2

t=1Xt

k2
−
∑k1−1

t=1 Xt

k1 − 1
+

k2∑
t=k1

∑t−1
l=1 Xl

t(t− 1)

for any integers k2 ≥ k1 ≥ 2, and the law of iterated
logarithm [37]. □
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